A Comparison of Three High-Precision
Quadrature Schemes

David H. Bailey ?, Xiaoye S. Li®,

aLawrence Berkeley National Laboratory, Berkeley, CA 94720. This work is
supported by the Director, Office of Computational and Technology Research,
Division of Mathematical, Information, and Computational Sciences of the U.S.
Department of Energy, under contract number DFE-AC03-765F00098.

b Lawrence Berkeley National Laboratory, Berkeley, CA 94720

Abstract

The authors have implemented three numerical quadrature schemes, using the new
Arbitrary Precision (ARPREC) software package, with the objective of seeking a
completely “automatic” arbitrary precision quadrature facility that does not rely
on any a priori information of the function to be integrated. The performance
and accuracy of these schemes are compared using a suite of 15 integrals, ranging
from continuous, well-behaved functions on finite intervals to functions with vertical
derivatives and integrable singularities at endpoints, as well as several integrals on
an infinite interval.

Key words: numerical quadrature, arbitrary precision

1 Introduction

Numerical quadrature has a long and distinguished history, including con-
tributions by Newton, who devised the basis of what is now known as the
Newton-Cotes scheme, and Gauss, who devised what is now known as Gaus-
sian quadrature. In the twentieth century numerous additional schemes were
devised, including extended Simpson rules, adaptive quadrature, Romberg
integration, Clenshaw-Curtis integration and others. In addition, numerous
“kernels” have been devised that permit one of these schemes to efficiently

Fmail addresses: dhbailey@lbl.gov (David H. Bailey), xs1i@1bl.gov (Xiaoye
S. Li).

Preprint submitted to Real Numbers and Computers’5 31 March 2003

compute definite integrals of functions that include expressions of a certain
type.

Virtually all of these techniques, as well as their practical implementations on
computers, have been targeted to computing definite integrals to the accuracy
of 15 digits or less, namely the limits of ordinary IEEE 64-bit floating-point
precision. Relatively little attention has been paid to the issues of very high
precision quadrature, in part because few serious applications have been known
for such techniques. The software packages Mathematica and Maple include
arbitrary precision arithmetic, together with numerical integration to high
precision. These facilities are generally quite good, although in many cases
they either fail or require an unreasonably long run time.

In the past few years, computation of definite integrals to high precision has
emerged as a critical tool in experimental mathematics. In particular, it is
often possible to recognize an otherwise unknown definite integral in analytic
terms, provided its numerical value can be calculated to high accuracy. As
one example, recently the author, together with Jonathan Borwein and Greg
Fee of Simon Fraser University in Canada, were inspired by a recent problem
in the American Mathematical Monthly [1]. They found by using one of the
quadrature routines described in this paper, together with a PSLQ) integer
relation detection program [3], that if C'(a) is defined by

B } arctan(va? + a?) dx
C(Cl) _0/ \/m(xz + 1)

then

C(0)=7log2/8 + (/2
C(1)=n/4 — 7v2/2 + 3V2arctan(V2)/2
C'(V2)=57%/96
where G = Zkzo(—l)k/(Zk + 1)? is Catalan’s constant (the third of these

results is the result from the Monthly). These particular results then led to
the following general result, among others:

OOarctam(\/ac2 + a?)dx B T
Va4 a(a? + 1) 2V — 1

[2 arctan(va? — 1) — arctan(Va?* — 1)]

As another example, recently Borwein and Roland Girgensohn of Zentrum
Mathematik in Germany were able to derive an analytic representation for

sums of the form [7]

"=

3
v
—
N
s ¢
~——
[N]
3

[1—z(1—2)] " dz

[1—2%(1 —2)] 7 dz

O O

where the ¢ function involves certain combinatorial values. Borwein and Gir-
gensohn then identified these two integrals (named dz(k) and ds(k)) by us-
ing a high-precision quadrature routine, similar to those described here, com-
bined with an integer relation detection facility. In this manner they obtained

d2(0) =1, dy(1) = 271'/(3\/§), and the recursion

(3p — 3)d2(p) = (Tp — 12)d2(p — 1) — (4p — 10)da(p — 2)
for p > 2. In a similar manner they obtained d3(0) = 1, ds(1) = (3log2 +
7)/5, d3(2) = (90 + 96log 2 + 377)/250, and the recursion

25(p — 1)(p — 2)ds(p) = (7Tp — 153)(p — 2ds(p — 1)
—[79(p = 2)(p = 3) + p + 21]ds(p — 2)
+3(3p — 10)(3p — 8)ds(p — 3)
for p > 3.

As a third example, recently Borwein and one of the present authors deter-
mined that

/erf2 (\/E cos :1;) cos® (x) dux
0

:i(_Ta)NH(SN—I—lQ)(?]éV)F(l N _N 1 3 N 1’_1)7

= (N +2)! A R

where F denotes the hypergeometric function.

In some cases, Maple or Mathematica is able to evaluate an integral, but the
resulting expressions are extremely complicated, and thus not very useful. For
example, although the integrals

7 () dt
]1‘0/ @D+ 1)

/4
/tht

I :/7

2 81n2(t)
_/ zsinz dx
1+ cos?zx

are successfully evaluated by Maple and Mathematica, the results are lengthy
expressions involving advanced functions and complex entities. In the third
problem, for instance, the expression produced by Mathematica continues for
more than 100 lines! We suspect that there are considerably simpler closed-
form versions of these integrals.

Indeed, by using the inverse symbolic calculator (ISC) tool at
http://www.cecm.sfu.ca/projects/ISC/

we obtain the following, based solely on the high-precision numerical values
of these integrals:

L=7%2—2)/32
Iy=—7*/16 + 7In(2)/4 + G
]3:71'2/4,

where (¢ denotes Catalan’s constant.

These and numerous other examples that we could cite have emphasized the
need for a truly general-purpose high precision quadrature facility, by which
we mean a program that can numerically evaluate any definite integral to high
precision, given nothing other than the function definition in a separate user
subprogram. By “high precision” here we mean typically hundreds of digits,
although there is no reason they could not be used for even higher precision.
In other words, we seek a quadrature facility that does not rely on symbolic
manipulation, the presence or absence of certain “kernels” in the integrand,
bounds on the magnitude of the function or any of its derivatives, or any

other a priort knowlege of the specific function to be integrated. We also
seek a scheme that is well-suited to highly parallel implementation, so that
especially when very high precision results are required, a parallel program can
be utilized for extra high-speed evaulation. By the way, this latter requirement
by itself rules out reliance on symbolic tools or on commercial products such
as Mathematica and Maple, since these are not yet available in highly parallel
implementations.

The only assumptions that we grant is that the function to be integrated has a
finite definite integral and is infinitely differentiable within the given interval.
It may have a singularity (either a blow-up singularity or a vertical derivative)
at one or both endpoints. The interval itself may be finite, semi-infinite or even
the entire real line. Note that definite integrals of functions with a discrete set
of discontinuities or other singularities within an interval may be computed
as a sum of definite integrals on subintervals, so that the assumption given
above encompasses a broad range of functions of interest.

2 The ARPREC Software

The quadrature techniques we describe below have been implemented using
the new Arbitrary Precision (ARPREC) computation package [4]. This soft-
ware is based in part on the Fortran-90 MPFUN package [6], which in turn is
based on an earlier Fortran-77 package [5]. Both of the earlier packages were
targeted to a Fortran environment. In the Fortran-90 version of MPFUN,
object-oriented facilities built into the Fortran-90 language (notably custom
datatypes and operator overloading) were exploited to permit Fortran pro-
grammers to utilize the MPFUN library by making only minor changes to the
user’s source code.

The ARPREC library extends the functionality of the MPFUN packages to the
realm of C and C++ programs. In particular, the ARPREC package combines
the following features, which we believe to be unique for currently available
software of this type:

e Code written in C++ for high performance and broad portability.

e Both C4++ and Fortran-90 translation modules, which permit conventional
C++ and Fortran-90 programs to utilize the package with only very minor
changes to source code.

Arbitrary precision integer, floating and complex datatypes.

Support for datatypes with differing precision levels.

Inter-operability with conventional integer and floating-point datatypes.
Many common transcendental functions (sqrt, exp, sin, erf, etc).
Quadrature routines (for numerical integration).

e PSLQ routines (for integer relation detection).
e Polynomial equation solutions, both real and complex roots.
e Special routines for extra-high precision (> 1000 digits) computation.

3 The Three Quadrature Schemes

We describe here three state-of-the-art numerical quadrature schemes that are
suitable for computing definite integrals to very high precision. These schemes
have been designed to address the objective mentioned in the introduction,
namely a robust quadrature facility that does not rely on symbolic manipula-
tion or other a priori information about the function to be integrated.

These three schemes are as follows:

o QUADGS: A Gaussian quadrature scheme. Gaussian quadrature certainly
is not new, although most descriptions in the literature do not address the
requirements of arbitrary precision implementation. This scheme approxi-
mates an integral on [—1,1] as the sum > o<, w; f(x;), where the abscissas
x; are the roots of the n-th degree Legendre polynomial P,(z) on [—1,1],
and the weights z; are

w,; = —2
T DP(a) P ()

[2, pg. 187]. We compute the abscissas using a Newton iteration scheme
with a dynamically changing level of precision, so that the total cost is only
about twice times the cost of the final iteration. The starting value for z;
in these iterations is given by cos[r(j — 1/4)/(n + 1/2)] [12, pg. 125]. We
compute the Legendre polynomial function values using an n-long iteration
of the recurrence Py(x) =0, Pi(x) =1 and

(k4 1)Pry1(x) =2k + Da Py(x) — kPy_1(x)

for k& > 2. The derivative is computed as P! (x) = n(xP,(z)— Pu_1(2))/(z*—
1). For the tests below, nine levels (sets of abscissas and weights) are pre-
computed.

The number n of abscissas and weights required at level k is n = 3 -
2% in the implementation below, so that the total required for m levels is
approximately 6 - 2. The cost of computing abscissas and weights at a
given level with this scheme increases quadratically with n. The abscissas
and weights can alternately be computed using an eigenvector scheme due
to Golub and Welch [10], although the cost for this method also increases
quadratically with n.

o QUADERF': A error function-based quadrature scheme. This program ap-
proximates an integral on [—1,1] as a sum Y g<;c, w;f(2;), as with Gaus-
sian quadrature, but here the abscissas z; are given by erf(hy), where
erf(z) = (2//7) [T e dt, and the weights are given by (2//7)e~ ()",
We compute the error function erf(x) as 1 — erfc(a), using the following
formula given by Crandall [9, pg. 85] (who in turn attributes it to a 1968
paper by Chiarella and Reichel [8]):

e~Pat 1 g—k*a? 2
erfc(t) = - (t_2 +2 Z k202 + tz) + 1 _ e2nt/a + B

k>1

where |E| < ¢ /%", The parameter a is chosen large enough to ensure that
the error £ is sufficiently small. As with the Gaussian scheme, abscissas and
weights are pre-computed for each level. Each level k uses h = 227%. Note
that in this case, the even-indexed abscissas and weights at one level are
merely the full set of the previous level. Thus only the odd-indexed half of
the abscissas and weights need to be computed at each level (after the first
level). Also, the function to be integrated needs to be evaluated only at the
odd-indexed abscissas at each level.

The number n of abscissas and weights required at level & depends on
the numeric precision being used. In the implementation here, n = 4 - 2%
approximately, so that the total required for m levels is approximately 8-2™.
The cost of computing abscissas and weights with this scheme increases only
linearly with n.

o QUADTS: A tanh-sinh quadrature scheme. This scheme is similar to the er-
ror function scheme. In this case the abscissas are chosen as x; = tanh(7/2-
sinh(f7)) and the weights w; = /2 cosh(hj)/ cosh®(x/2-sinh(hj)). In this
case level k uses h = 27%. As in the previous case, the even-indexed abscissas
and weights at one level are merely the full set of the previous level, so that
only the odd-indexed half of the abscissas and weights (as well as function
values) need be computed at each level (after the first level). This scheme
was first introduced by Takahasi and Mori [13,11].

The number n of abscissas and weights required at level & depends on
the numeric precision being used. In the implementation here, n = 3.3 - 2%
approximately, so that the total required for m levels is approximately 6.6 -
2". The cost of computing abscissas and weights with this scheme increases
only linearly with n.

4 The Euler-MacLaurin Summation Formula

The error function and tanh-sinh quadrature schemes are based on the Euler-
MacLaurin summation formula, which can be stated as follows [2, pg. 180].

Let m > 0 and n > 1 be integers, and define h = (b—a)/n and x; = a+ jh for
0 < j < n. Further assume that the function f(x) is at least (2m + 2)-times
continuously differentiable on [a, b]. Then

b n

[7@ de=hY fa) — 5 (Fla) +)

a =0
m hziBzi

where B,; denote the Bernoulli numbers, and

(FE0 () — SO a)) — B

P h2m+2(b _ G)Bzm+2f2m+2 (5)
(2m + 2)!

for some £ € (a,b).

In the circumstance where the function f(x) and all of its derivatives are zero
at the endpoints a and b, the second and third terms of the Euler-MacLaurin
formula are zero. Thus the error in a simple step-function approximation to the
integral, with interval &, is simply E. But since F is then less than a constant
times A*"+2/(2m+2)!, for any m, we conclude that the error goes to zero more
rapidly than any power of k. In the case of a function defined on (—o0, 00), the
Euler-MacLaurin summation formula still applies to the resulting infinite sum
approximation, provided as before that the function and all of its derivatives
tend to zero for large arguments.

This principle is utilized in the error function and tanh-sinh schemes by trans-
forming the integral of f(x) on the interval (—1,1) to an integral on (—oc, o)
using the change of variable = ¢(¢). Here g(x) is some monotonic function
with the property that g(z) — 1 as # — oo and g(2) — —1 as @ — —o0, and
also with the property that ¢’(x) and all higher derivatives rapidly approach
zero for large positive and negative arguments. In this case we can write, for

h >0,

1

[r@rde= [)@ i = 8y i)

-1

where x; = g(hy) and w; = ¢'(hj). If the convergence of ¢'(f) and its deriva-
tives to zero is sufficiently rapid for large [t|, then even in cases where f(x)
has a vertical derivative or an integrable singularity at one or both endpoints,
the resulting integrand f(g(t))g¢'(t) will be a smooth bell-shaped function for
which the Euler-Maclaurin summation formula applies. In such cases we have

that the error in the above approximation decreases faster than any power of

h.

The error function integration scheme uses g(t) = erf(t) and ¢'(t) = (2//7)e " .
Note that ¢'(t) is merely the bell-shaped probability density function, which is
well-known to converge rapidly to zero, together with all of its derivatives, for
large positive arguments. The tanh-sinh scheme uses ¢(¢) = tanh(x /2 - sinh ?)
and ¢'(t) = 7/2 - sinht/ cosh?(7 /2 - sinh t), for which the convergence to zero
is compound exponential, even faster than the probability density function.

In practice, for functions that are bounded and well behaved on a finite closed
interval, all three of these numerical integration schemes exhibit quadratic con-
vergence: after a few initial levels, subsequent levels produce approximations
with approximately twice the number of correct digits as the previous level.
Further, as we shall see, the error function and tanh-sinh schemes also exhibit
quadratic convergence even for many functions with vertical derivatives or
singularities at one or both endpoints of the interval.

5 Error Estimation

As mentioned above, we seek a general purpose high-precision numerical in-
tegration facility that does not depend on any a priori knowledge of the func-
tion or its derivatives. Thus the theoretical bounds that are known for many
quadrature schemes are not of much use here. Instead, we use the following
projection scheme, which is inspired by (although it does not critically rely
on) the quadratically convergent behavior normally achieved by the above
schemes.

Let Si be the computed approximations of the integral for levels k up to level
n. Then the estimated error £, at level nis one if n < 2, zeroif 5, = 5,_1, and
otherwise 10¢, where d = min[0, max(d?/d,, 2d,, d3)], with d; = log,, | S, —
Sn-1l, d2 =logyy]S, — Sn—z|, and ds = log,o(e- max; | f(x;)]). In the definition
of d3 in the previous sentence, ¢ is the “machine epsilon” of the multiprecision
system being used (in the examples below, ¢ = 107"?), and the maximum
indicated in this expression is taken over all abscissas x; at the n-th level.

6 Test Problems

The following set of 15 integrals were used as a test suite to compare these
three quadrature schemes. In each case an analytic result is known, as shown
below, facilitating the checking of results.

Continuous functions on finite itervals:

1 /tlog L t)dt = 1/4

0
1
2:/t2arctantdt = (x =2+ 2log2)/12

/2

3:/etcostdt = (7= 1)/2

1

t 2 4 12
4/ arctan(v2 +)dt — 572/96
TENETE

0

Continuous functions on finite itervals, but with a vertical derivative at an
endpoint:

1
5:/\/Zlogtdt — 49
0

1
6:/x/1—t2dt — /4
0

Functions on finite intervals with an integrable singularity at an endpoint.

/2

10:/\/tantdt = 71'\/5/2
0

FPunctions on an infinite interval:

10

o0 1
1 d
11:/ dt:/—S — /2
J 1+ #2 J 1 —2s 4+ 252

o) 1
et el=1/s ds

12:/—dt Y .

J Vi J V83 — st v

o] 1 2

—(1/s=1)%/2 4

13:/e—f2/2dt - /68—25 = \J7/2

0 0

Oscillatory functions on an infinite interval:

00 1

1-1/s 1 —Dd
14:/€_tCOStdt = /e COS(Q/S) ds = 1/2
0 0 s
F sin ¢ T sint r 12 240 720
[sin _ [sin -
0 0
)

Problem 4, as was mentioned above, appeared in Sept. 2002 American Math-
ematical Monthly [1]. The others were constructed by the authors. Problems
11-15, as noted above, are integrals on an infinite iterval, which is in each case
here [0, 00). Except for Problem 15, such integrals are evaluated by using the
variable transformation ¢ = 1/s — 1, as shown above. In Problem 15, the inte-
gral is written as the sum of integrals on [0, 7] and [r,00). Then integration
by parts is applied several times to the second integral of this pair, result-
ing in the expression shown above. This expression requires the evaluation of
the integrals [; ¢~'sint dt and fol/7T t"sin(1/t) dt, which are significantly bet-
ter behaved than the original, resulting in faster convergence. Even with this
transformation, however, problem 15 remains the most difficult of the entire
set.

7 Results of Tests

The three quadrature routines were each implemented using the ARPREC
arbitrary precision computation package [4], in a virtually identical program-
ming style, with the user working precision set at 400 digits (the actual working
precision is slightly higher, roughly 420 digits). Each quadrature routine was
run blindly — beginning at level one and continuing at successively higher
levels (each of which approximately doubles the run time) until one of these

11

QUADGS QUADERF QUADTS
Prob. | Level Time | Error | Level | Time | Error | Level | Time | Error
Init | 9 | 2778.29 9 | 131.80 9 | 45.46
1| 6 8.72 | 10746 | 9 57.43 | 107406 | 7 | 13.69 | 10739
21 6 8.86 | 107405 | 9 36.17 | 10749 | 8 | 21.86 | 1071
31 5 4.16 | 107195 | 9 44.06 | 107105 7 | 12.01 | 107195
41 6 8.78 | 107495 | 9 92.48 | 107406 | 8 | 38.43 | 107406
50 9 78.00 | 107! 9 68.15 | 1074% | 7 1 16.08 | 1074
6| 9 3.65 | 10712 9 3.94 | 107406 | 7 0.90 | 107392
7|9 4.39 | 107* 8 2.39 | 107219 | ¢ 0.55 | 10719
8| 9 75.84 | 1076 9 65.58 | 107405 | 7 | 15.29 | 107400
9| 9 99.83 | 1077 9 69.96 | 107403 | 7 | 17.97 | 10739
0] 9 31.68 | 107* 8 7.49 | 10729 | 6 2.36 | 107194
11 7 0.61 | 107105 9 3.04 | 107255 9 2.59 | 0
121 9 47.55 | 1071 9 18.88 | 107132 | 9 | 26.09 | 10723
13 9 41.74 | 107353 9 11.30 | 10~9! 9 17.97 | 107241
4| 9 71.69 | 10712 | 9 26.87 | 107 9 | 44.39 | 10716°
15| 5/9 34.45 110719 | 9/9 | 41.14 | 1077 | 7/9 |31.66 | 1071?

three conditions was met: (1) the maximum level (level nine) is completed; (2)
the estimated error achieves the accuracy target (107%??); or (3) the absolute
values of the function near an endpoint are found to be so large that even when
multiplied by very small weights, the resulting summands are not sufficiently
small to insure full accuracy in the result (which means that higher levels will
not further improve the accuracy).

The results of these tests are given in the table below. The first line gives the
run time, in seconds, for the initialization process. Altogether, the nine levels
of initialization produced 3066 multi-precision abscissas (and the same number
of weights) for the Gaussian scheme, 4033 for the error function scheme, and
3305 for the tanh-sinh scheme. In problems 15, where a two-step scheme is
used, the number of levels used for both steps are shown in the table. Note
that in problem 11, the tanh-sinh quadrature routine produced a value that
was identical to the reference value (i.e. no error whatsoever).

12

8 Analysis

The Gaussian quadrature routine was clearly superior for the first set of prob-
lems, namely integrals of bounded, well-behaved continuous functions on finite
intervals. It was as much as ten times faster than the error function routine on
these problems, and as much as four times faster than the tanh-sinh routine.
Its accuracy on these problems was consistently less than “machine epsilon.”
The Gaussian routine also did quite well on problems 11 and 13. But for the
other problems, which are characterized by functions that are not well-behaved
at endpoints, its accuracy was quite poor, even when all nine levels of abscissas
and weights were utilized. Another drawback of the Gaussian scheme is that
its initialization time is 20 times higher than the error function scheme and
57 times higher than the tanh-sinh routine. This is due to the fact that the
amount of computation in the Gaussian initialization scales as n?, where n is
the number of abscissas and weights, whereas the scaling is linear with the
other two schemes. The authors are not aware of any solution to this feature
of Gaussian quadrature — all known schemes for computing abscissas and
weights have n? scaling.

The error function quadrature routine was several times slower than Gaussian
quadrature on the well-behaved problems, as noted above, but it produced
highly accurate answers on almost all problems. In cases where it did not
achieve over 400 digits accuracy, it is clear that it could do better, provided
somewhat higher levels of abscissas and weights are used, and a higher working
precision is employed. It did poorly on problem 15, but so did the other two
routines. For problems seven and ten, the error function scheme stopped before
using all nine levels of abscissas and weights, even though it has achieved
only about 200 digits accuracy, because the function values near one of the
endpoints are very large, so that as a result higher levels of abscissas and
weights will not further increase accuracy. On these problems, roughly 800
digit working precision is required to achieve 400 digit accuracy in the result.

The tanh-sinh quadrature routine run times were faster than the error function
routine in most cases, although not as fast as the Gaussian quadrature routine
on the well-behaved problems. Its initialization time is easily the fastest of the
three. It did poorly on problem 15, but no worse than the other two routines.
As with the error function routine, the tanh-sinh function scheme achieved
only about 200 digits accuracy on problems seven and ten, because the func-
tion values near one of the endpoints are very large. For these problems, 800
digit working precision is required to achieve a full 400 digit precision in the
result, as noted above with the error function routine.

One additional item of note here is that the error estimation scheme given in
section five performed very well in these tests, for each of the three quadrature

13

routines. In most cases it produced a value that was either identical to (in
power of ten), or a few orders of magnitude higher than, the actual error in the
final result. In no case did it underestimate the actual error of the final result,
except for problem 15, where it was roughly four orders of magnitude too high
for each of the three routines. But this is easily explained, since the second of
the two integrals involved here is multiplied by the coefficient 40,320 in the
main program outside the integration routine (see the description of problem
15 in section four above). In other words, even in problem 15, the estimated
error was accurate for the actual definite integrals that were calculated.

9 Summary

Each of these quadrature routines has proven its value in a certain domain of
quadrature problems. Overall, the tanh-sinh scheme appears to be the best.
It combines uniformly excellent accuracy (except for problem 15) with fast
run times, typically only a few seconds. It is the nearest we have to a truly
all-purpose quadrature scheme at the present time.

These three programs, as well as the associated ARPREC arbitrary precision
computation software, are available from the website
http://www.nersc.gov/ dhbailey/mpdist

We wish to add here that each of the three schemes described above are well-
suited for parallel computation. The present authors are thus working on an
implementation for highly parallel computer platforms. The implementation is
based on the MPI programming model. We expect reasonably linear scalability
up to roughly 256 or possibly more processors. This implementation is nearly
done, and we will be able to report on this for the final paper.

14

References

[1]

Zafar Ahmed, “Definitely an Integral,” American Mathematical Monthly, vol.
109 (2002), no. 7, pg. 670-671.

Kendall E. Atkinson, Elementary Numerical Analysis, John Wiley and Sons,
1993.

David H. Bailey and David Broadhurst, “Parallel Integer Relation Detection:
Techniques and Applications,” to appear in Mathematics of Computation,
available from the URL

http://www.nersc.gov/ dhbailey/dhbpapers

David H. Bailey, Yozo Hida, Xiaoye 5. Li and Brandon Thompson, “ARPREC:
An Arbitrary Precision Computation Package,” software and documentation
available from the URL

http://www.nersc.gov/ dhbailey/mpdist

David H. Bailey, “Multiprecision Translation and Execution of Fortran
Programs,” ACM Transactions on Mathematical Software, vol. 19 (1993), pg.
288-319.

David H. Bailey, “A Fortran-90 Based Multiprecision System,” ACM
Transactions on Mathematical Software, vol. 21 (1995), pg. 379-387.

Jonathan M. Borwein and Roland Girgensohn, “Evaluations of Binomial
Series,” manuscript, 2002, available from
http://www.cecm.sfu.ca/preprints/2002pp.html.

C. Chiarella and A. Reichel, “On the Evaluation of Integrals Related to the
Error Function,” Mathematics of Computation, vol. 22 (1968), pg. 137-143.

Richard E. Crandall, Topics in Advanced Scientific Computation, Springer-
Verlag, 1996.

[10] G. H. Golub and J. H. Welsch, “Calculation of Gauss Quadrature Rules,”

Mathematics of Computation, vol. 22 (1969), pg. 221-230.

[11] M. Mori, “Developments in the Double Exponential Formula for Numerical

Integration,” Proceedings of the International Congress of Mathematicians,
Springer-Verlag, 1991, pg. 1585-1594.

[12] William H. Press, Brian P. Flannery, Saul A. Teukolsky and William T.

Vetterling, Numerical Recipes, Cambridge University Press, 1986.

[13] H. Takahasi and M. Mori, “Double Exponential Formulas for Numerical

Integration,” Publications of RIMS, Kyoto University, vol. 9 (1974), pg. 721-
741.

15

